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Abstract 

 

The genome sequence of one OXA-48-producing Klebsiella pneumoniae belonging to 

ST405, and three belonging to ST11, were used to design and test ST-specific PCR assays for 

typing OXA-48-producing K. pneumoniae. The approach proved to be useful for in house 

development of rapid PCR typing assays for local outbreak surveillance. 

 

 

Rapid typing of clinical isolates is essential for the management of  hospital outbreaks. 

Ideally, typing should provide correct strain differentiation in real time to discriminate 

between outbreak and non-outbreak isolates. In practice this is seldom achieved, as most 

methods are time-consuming or have to be performed in batches, and typing is often done 

retrospectively. During the last years efforts have been oriented towards rapid real-time 

typing with the introduction of a commercial highly standardized REP-PCR 
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(Diversilab®)[1,2,3], and currently several genomic typing techniques are under 

development[4,5,6]. Genomic typing is the most promising approach as it may reach the 

maximum resolution possible and has potential for further developments but is still costly and 

time-consuming. The availability of whole genome sequences opens a way to the design of 

strain-specific probes for the development of rapid and simple PCR typing assays.  

 

OXA-48-producing Klebsiella pneumoniae has been present in our hospital since January 

2011 [7,8] with more than 450 isolates obtained from clinical and surveillance samples from 

more than 300 patients. Clonality is analyzed routinely by semi-automated REP-PCR 

(Diversilab®), and clonal groups have been further characterized by multi-locus sequence 

typing [7,9]. The outbreak is largely due to two clones: one belonging to ST405, that was 

dominant during the first year [7], and another belonging to ST11, that has been slowly 

increasing in frequency and has become the major clone in the last year. Other OXA-48-

producing K. pneumoniae clones and even other OXA-48-producing enterobacteriaceae have 

been isolated sporadically. These two STs have been found also in other hospitals from 

Madrid and other Spanish areas, the most frequent being ST11 [10,11]. 

 

To design clone-specific probes, a search for unique sequences was done using the genomes 

of an OXA-48-producing K. pneumoniae ST405 isolate from our hospital (Genbank 

accession number AMRH00000000.1) [12] and three ST11 isolates collected at the antibiotic 

reference laboratory of the National Centre for Microbiology (European Nucleotide Archive, 

ENA, accession numbers ERS201946, ERS201950, ERS201959) [10]. Selection of "strain-

specific" sequences was done with the Novel Region Finder tool of Panseq [13]. The Panseq 

output was further filtered by deleting sequences with significant matches in Genbank. This 

procedure yielded a set of 83 ST405 sequences of which 14 were considered unique and four 

of them were arbitrarily chosen as potential targets. Similarly, 125 ST11 sequences were 

obtained of which 47 were considered unique and four were arbitrarily selected. Of these 

four, two were specific for our ST11 sequences, and the other two were common to our 

sequence and the published genome of K. pneumoniae HS11286, which also belongs to ST11 

[14]. Primers for each sequence were designed to produce different band sizes and be used 

with the same annealing temperature (Table 1).  

 

Eight primers pairs (four targeted to ST405 and four to ST11) were tested with four ST405 
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isolates, four ST11 isolates, and nine non-ST405 non-ST11 isolates: ST15, ST23, ST26, 

ST45, ST147, ST307, ST323 and ST846, all of them OXA-48-producers isolated previously 

[7]. The four ST405-specific primer pairs yielded amplification products with the ST405 

isolates, and not with the other isolates. One ST11-specific primer pair was discarded because 

of poor PCR results, the other three primer pairs produced amplification products only with 

the ST11 isolates.  

Furthermore, one group consistently identified by Diversilab® as an independent group, was 

found to be positive in the four ST405-specific PCR reactions and was confirmed by MLST 

analysis to belong to ST405. Two minor Diversilab® groups were classified by the ST11-

specific PCR as ST11 clones and, again, this was confirmed by MLST analysis. The non-

ST405 non-ST11 isolates were negative with all the primer sets.  

Fifteen ST11-single locus variants (SLVs), including eight ST340 and seven ST437, were 

tested with the ST11 primer pairs. All of them were negative for target region 2, and positive 

for target regions 3 and 4. 

Finally, thirty-four independent ST11 isolates from diverse origins were tested. These 

included fifteen isolates with CTX-M-15, eight with  CTX-M-15 and OXA-48, one with 

CTX-M-15 and IMP-22, three with VIM-1, two with OXA-48-like,  two with KPC-2, one 

with NDM-1, one with CMY-2, and one with CMY-2 and DHA-1. Thirty-two of them were 

found to be positive with the three ST11 primer pairs and two were positive with two primer 

pairs.  

 

Currently end-point PCR with target region 4 of ST405 and target region 3 of ST11 is done 

directly on colony lysates for rapid typing of OXA-48-producing K. pneumoniae obtained in 

our hospital (Fig. 1). Only those samples that are negative for the two ST-specific PCR 

reactions are further analyzed by Diversilab®. During a period of eight months 179 isolates 

were analyzed, of which 33 were ST405, 138 were ST11 and 8 were negative for the two 

PCR reactions. These eight were analyzed by Diversilab® and confirmed to belong to some 

of the previously characterized minor clones [7]. 

 

Next, Taqman probes were designed for real time PCR amplification of ST405 target region 

4 and ST11 target region 3 (Table 1). DNA from characterized isolates (five ST405, five 

ST11 and nine non-ST405 non-ST11) was used to set up the reaction conditions and check 

performance. Single-tube multiplex real time PCR was done using Takara exTaq Premix, 

with ROX, 0.5 μM of each primer and 0.2 μM of each probe. Reaction conditions were: 
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initial denaturation at 95ºC for 5 min, followed by 40 cycles of denaturation (15s at 95ºC), 

annealing (30s at 50ºC), and extension (1min at 72ºC). There was no interference between 

primers or probes and all the samples tested were correctly identified. 

 

Our results show the feasibility of using genome sequences to search for strain-specific 

sequences. Given the high level of horizontal gene transfer and the mosaic structure of 

bacterial genomes [15], the presence of a single sequence should not be taken as a fully 

consistent marker to identify specific strains. Indeed, ST11-SLVs could also be detected with 

some primer pairs. Nevertheless, used within a local context it provides a fast, cheap and 

reliable PCR typing method that might be useful to track outbreak strains in real time. 
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Table 1. Primers used in this work.  

 

Strain 
Target 
region Oligonucleotides 5'-->3' sequence 

Product 
size 

ST405 

1 1-F GATGAGCAAGGAGTGCAAGG 
300 bp 

 1-R GCCTCGATTGCGAATGGTATG 
2 2-F GAGCCACTGCTTGATGATTG 

367 bp 
 2-R TCGCGGCATCAGCAATTTCC 

3 3-F CCTTCACGCCCTGAGATTTC 
512 bp 

 3-R CAAACAGGACAGCGATAAGC 
4 4-F GGACTAACCCTATCCCTAAC 

286 bp 
 4-R CTACATTATTTGCTGCCGTCG 

       
4 4-P FAM-CAACACCGCATTCACAGGTC-TAMRA   

          

ST11 

2 2-F CCGGTCAACAGGGATTGAAG 
268 bp 

 2-R AAGTCGCAGCATTAGCCCAG 
3 3-F GATCATCCGCCTATCCCTTG 

238 bp 
 3-R CCCAAGATGTAGGCTGCAAG 

4 4-F GAACGGCGCAACCTATACTG 
491 bp 

 4-R CATTGAGCCATCAGGCCAC 
        
3 3-P HEX-CCAAGCGGTAGTGATTAAGC-TAMRA   

 

 

Fig. 1. End-point PCR with ST-specific primers. Genomic DNA from four clinical isolates 

was tested with primer pairs specific for target region 4 of ST405 and target region 3 of ST11 

and PCR products analyzed by agarose gel electrophoresis. A short (197 bp) region of the 

16S rRNA gene was used as a control. 
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