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Abstract

ROGDI-related neurodevelopmental and dental disorder (ROGDI-RD), also known as
Kohlschiitter-Tonz syndrome (KTZS, MIM #226750), is a rare condition characterized by
developmental abnormalities affecting both the central nervous system (CNS) and the
dentition. These phenotypes highlight the role of complex gene-environment interactions
and developmental networks shared by the nervous and stomatognathic systems, both of
which originate mostly from neural crest-derived cells. In this review, we analyze clinical
and genetic data from 54 previously reported ROGDI-RD patients to better define the
phenotypic spectrum of the disorder. Most of the reported cases harbor protein-truncating
variants. Here, we also present the first description of a patient carrying a missense variant
in ROGDI atypical leucine zipper gene, ROGDI in trans to a frameshift variant. This
individual presented with tooth agenesis—a dental anomaly not previously associated
with the syndrome—alongside classic neurological and dental enamel features, suggesting
that the phenotypic spectrum of ROGDI-RD may be broader than currently recognized.
Using a complexity and network science framework, we discuss how dysregulation in
multilevel, interacting developmental systems may explain the pleiotropic features of
ROGDI-RD. Our findings underscore the importance of early, interdisciplinary clinical
evaluation in patients with neurodevelopmental symptoms and enamel defects. As enamel
phenotypes such as amelogenesis imperfecta are heterogeneous, comprehensive genomic
analyses and collaborative clinical approaches are essential for accurate diagnosis and
improved care.
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1. Introduction

Syndromes with pleiotropic effects enhance our understanding of the underlying
factors and their interactions. ROGDI-related disorder (ROGDI-RD), also known as
Kohlschiitter-Tonz syndrome (KTZS, MIM # 226750), is one such syndrome affecting
both the dentition and the central nervous system. ROGDI-RD is caused by homozygous
or compound heterozygous variants in ROGDI, which encodes a leucine-zipper protein
(ROGDI atypical leucine zipper).

Development of the dentition and the orofacial complex is under the influence of
complex adaptive systems involving genetic, epigenetic, and environmental factors [1].
Similar interactions are also implicated in the development of the central nervous system
(CNS). In both tissues, these processes occur within a multilevel, complex interacting
network [2]. Both the dentition and the CNS originate embryologically from neural crest-
derived cells.

In this review, we examine 54 published ROGDI-RD patients to clarify the clinical
spectrum of the syndrome. We also analyze previously reported genetic variants—mainly
protein-truncating variants—and present, to our knowledge, the first missense variant in
ROGDI identified in a patient with tooth agenesis, a developmental dental anomaly not
previously associated with the syndrome. To deepen our understanding of its etiology
and phenotype, we explore these aspects using the framework of complexity and network
sciences, seeking to uncover underlying mechanisms and broader clinical insights.

2. The Disease and the Protein
2.1. ROGDI-Related Neurodevelopmental and Dental Disorder (ROGDI-RD)

ROGDI-RD is an autosomal recessive disease characterized by global developmental
delay with regression, epilepsy, and amelogenesis imperfecta causing yellow or brown
discoloration of the teeth.

ROGDI-RD is one of the rare ectodermal dysplasia syndromes, and it is also considered
an epileptic encephalopathy as the intellectual impairment is likely to be linked to the
severity of the epilepsy. There is variable expressivity in the spectrum and the severity
of symptoms, even within the same family, regarding the facial features, age at onset
of seizures, developmental status prior to seizures, seizure type, response to treatment,
discoloration of the teeth, and neurological and cognitive symptoms [3].

Recent studies have identified pathogenic variants in SCL13A5 and SATBI as causes
of neurodevelopmental disorders accompanied by dental anomalies. Although these genes
have been grouped under the broader category of conditions referred to as Kohlschtitter—
Tonz syndrome, their inheritance patterns and particularly the dental phenotypes differ
from those observed in the ROGDI-related form of the disease [4-6]. While this may reflect
genetic heterogeneity, it is also plausible that these genes are related to distinct conditions
affecting the same organ systems along the oral-brain axis but with overlapping yet
divergent clinical features, especially given that SCL13A5 and SATB1 do not have roles in V-
ATPase function. For this reason, we propose using the term ROGDI-related disorder rather
than the umbrella term Kohlschiitter—-Ténz syndrome. Gene-based nomenclature facilitates
more accurate phenotypic comparisons and may also support future reclassification efforts,
as additional syndromes involving both dental and CNS symptoms are identified.
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2.2. ROGDI Expression and Function

ROGDI is highly expressed in the adult human brain and the spinal cord, while
expression is much lower in the fetal brain [7,8]. It has been shown that ROGDI has a
pre-synaptic localization in neurons and is proposed to be involved in the regulation of
exocytosis in developing nerve endings and ameloblasts [9].

The main function of ROGDI is still elusive, but it is suggested to have a role in keeping
the pH acidic within the organelles and degradation of proteins [10]. ROGDI is the human
homolog of Rav2 of the yeast RAVE complex. It is essential for efficient reassembly of the V-
ATPase, which is crucial for vacuolar function and cellular pH homeostasis. Human ROGDI
can partially rescue the growth defect of yeast rav2A mutants, supporting a conservation
of function [10,11].

The ROGDI~/~ knockout mouse model develops ROGDI-RD-like symptoms such as
epilepsy, memory impairment, and amelogenesis imperfecta with severe enamel hypomin-
eralization, also suggesting a role for ROGDI in the regulation of lysosomal acidification
due to decreased V-ATPase activity caused by impaired Rabconnectin-3 complex [10,11].
ROGDI is a prominent member of the mammalian Rabconnectin-3 complex together with
DMXL1, DMXL2, and WDR?. In this complex, ROGDI is the central linker bridging the
proteins Rabconnectin-3a and Rabconnectin-3b encoded by DMLX2 and WDR?, respec-
tively. The combination of neurological and tooth phenotypes in ROGDI-RD patients is
consistent with ROGDI bridging Rabconnectin-3a and Rabconnectin-3b subunits which
show tissue-specific enrichment relevant to these affected organs [10,11].

Variants of the genes encoding the members of the Rabconnectin-3 complex, i.e., V-
ATPases, DMXL2, and WDR?7, result in epilepsy, intellectual disability, autism spectrum
disorder, or enamel defects [10,12]. Furthermore, both Rogdi and DmxI2 are downregulated
in the trisomic synaptic fractions of the Ts65Dn mouse model for Down syndrome [13].

3. Review of the Patients with ROGDI-RD Including a New Case

Since the initial description of ROGDI-RD in 1974, 54 individuals with homozygous
or compound heterozygous pathogenic ROGDI variants have been identified [3,14]. To
date, all the sequence variants reported in ROGDI-RD patients are predicted to be null
variants, suggesting loss of function as the disease mechanism [7,15]. We recently identified
compound heterozygous ROGDI variants in a patient, one of which is a missense variant.
To the best of our knowledge, this is the first report of a disease-causing missense variant
in ROGDL

3.1. Clinical Features of the New Case

A 28-year-old man with intellectual disability, autism, attention-deficit hyperactiv-
ity disorder (ADHD), and epilepsy was referred to the Department of Clinical Genetics,
Rigshospitalet for genetic diagnosis. He was born to non-consanguineous parents after
an unremarkable pregnancy. The birth weight was 3540 g and birth length 54 cm. During
infancy, he exhibited persistent irritation and poor eye contact. Motor milestones were
slightly delayed: he achieved head control at 3.5 months, sat without support and began
crawling at 9 months, and walked by 2 years of age.

He experienced his first generalized tonic—clonic seizure (GTCS) at 11 months of
age. Subsequently, he had both febrile and afebrile seizures. From the age of 6 years, he
began experiencing focal impaired awareness seizures. Seizures persisted despite the trial
of conventional antiseizure medications (ASMs). As the patient had multifocal epilepsy,
surgical treatment could not be offered. At the age of 16, a vagus nerve stimulator (VNS)
was implanted, resulting in a reduction in GTCS frequency, but it did not have a clear effect
on focal seizures. The patient is treated with ASMs, eslicarbazepine, phenobarbital, and
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rufinamide, alongside the VNS. There is no specific treatment available for this syndrome,
and the patient’s epilepsy is treated with the principles of treating refractory epilepsy
in general. The patient was treated with methylphenidate for ADHD in his childhood.
Currently, risperidone is used for behavioral disorders, with good response.

Physical examination at the age of 23 revealed retrognathia, downward-pointing
columella, low-set ears, and scoliosis. He spoke in simple two-three-word sentences
and used picture-based communication tools. ADHD and behavioral disorder in the
form of verbal and physical aggression, mild self-harm, and restlessness were also noted.
Brain magnetic resonance imaging did not show any pathological changes. Audiometric,
ophthalmologic, and abdominal ultrasound examinations were all within normal limits.

As the teeth phenotype was not among the referral symptoms and one of the variants
was a missense variant, the referring clinician was contacted to confirm the dental findings.
Clinically, the permanent teeth showed lusterless enamel with white, yellow, and brown
opacities. The teeth were crowded, with an overjet of 12 mm, bilateral distal occlusion,
and a deep incisor overbite measuring 5 mm. Teeth 11 and 21 had composite restorations
(Figure 1). Tooth 27 was ectopically positioned and caused resorption of tooth 26, as seen
on radiographs for all teeth. Teeth 18 and 28 were congenitally absent. Teeth 38, 37, 47, and
48 were removed under general anesthesia at the age of 20 due to ectopic positioning of 38
and 48 leading to pathological resorption of the adjacent teeth 37 and 47 (Figure 2). The
contrast between enamel and dentin on the radiographs was markedly reduced, indicating
poor enamel mineralization. The combined dental, clinical, and radiographic findings are
compatible with hypomature amelogenesis imperfecta together with tooth agenesis and
eruption defects. See Box 1 for explanation of different types of mineralization defects.

Figure 1. (A) Intraoral photo at the age of 10 years (before composites were made for 11 and 21)
shows brown color and distinct opacity due to hypomature amelogenesis imperfecta. (B-D) Intraoral
photo at the age of 28 shows composites of 11 and 21, brown and yellow opacity of all teeth, and
calculus in the lower front.

3.2. Description of the Genetic Finding

Trio exome sequencing revealed two compound heterozygous variants in ROGDI
(NM_024589.3): c.218del, p.(Gly73Valfs*3) and ¢.260T>C, p.(Val87Ala).

The pathogenicity of the two ROGDI variants was assessed according to ACMG/AMP
(American College of Medical Genetics and Genomics/Association for Molecular Pathology)
criteria (https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation/
(accessed on 1 August 2025).
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Figure 2. (A,B) Bitewings radiograph at the age of 18 years shows caries 26 and ectopic 27, yet no
resorption of 26. Low contrast between enamel and dentin is observed. (C) Panoramic radiograph at
the age of 28 years shows movement artifact as well as an ectopic 27 causing resorption distally on 26.
Teeth 18 and 28 are congenitally absent, but 37, 38, 47, and 48 were removed at the age of 20 due to
ectopic positioning and resorption.

The c.218del, p.(Gly73Valfs*3) variant, inherited from the father, is predicted to lead to
frameshift and premature stop of translation by altering the reading frame. It is not reported
in the Genome Aggregation Database (gnomAD v.4.1.0; https:/ /gnomad.broadinstitute.
org/ (accessed on 1 August 2025)) or the ClinVar database (https:/ /www.ncbi.nlm.nih.gov/
clinvar/ (accessed on 1 August 2025)). The variant is classified as pathogenic (PVS1_VSt;
PM2_Su; PP4_Mo). The maternally inherited missense variant c.260T>C, p.(Val87Ala) is
reported twice (allele frequency of 0.000001733) in heterozygous form in gnomAD and is
not present in ClinVar. However, in ClinVar a different nucleotide change affecting the same
amino acid, p.(Val87Gly), is reported in a patient with amelocerebrohypohidrotic syndrome,
which was a term used to define the same syndrome in the early days. The REVEL score of
the variant described in this paper is 0.344, which does not suggest pathogenicity, but the
AlphaMissense prediction, which also uses structural representations from AlphaFold2,
gives a score of 0.681, which suggests the variant to be likely pathogenic. The variant is clas-
sified as a variant of unknown significance using REVEL (PM2_Su; PM3_Mo; PP4_Mo) but
as likely pathogenic using AlphaMissense scoring (PM2_Su; PM3_Mo; PP3_Su; PP4_Mo).
Uncertainty in pathogenicity prediction remains an inherent challenge in clinical diagnosis,
which will likely diminish as more cases are reported, and predictive Al tools continue
to improve.

3.3. Dynamic Computational Modeling of the Val87 Ala Variant

Structural modeling of the wild-type (WT) ROGDI and the Val87Ala variant (Unipro-
tKB id: ID: Q9GZN7) were performed in both monomeric and dodecameric forms using
the crystal structure of human ROGDI (PDB: 5XQL; [16]) as a template. Once modeled, the
structures were simulated over a period of 300 ns of unrestrained molecular dynamics (MD)
simulation using the Amber18 package (https://ambermd.org (accessed on 1 August 2025);
University of California-San Francisco, CA, USA), essentially as previously described [17].
Trajectories were analyzed using cpptraj [18] and VMD [19].
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In the simulation performed with the dodecamer (shown in Figure 3A), no significant
changes were observed in the protein structure of Val87Ala compared to the WT). To better
detect potential differences in an environment less constrained by the whole polymer
structure, a simulation was subsequently performed using only the protein monomer.
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Figure 3. Molecular dynamics analysis of ROGDI Val87Ala variant. (A) Structure of the human
ROGDI dodecamer. The position of the alpha-carbon of the Val87 is shown (blue spheres). The yellow
circle indicates the position of the structures shown in (B) and (C). (B) Structure of the domain around
Val87 after 300 ns of unrestrained simulation. The positions of Val71, Phe100, Val190, and Leu201 are
indicated in the same hydrophobic cluster as Val87. The beta sheet where Val87 is located is in blue
and the opposite sheets with Val190 and Leu201 are in ocher. (C) Structure of the domain around
the Ala87 after 300 ns of unrestrained simulation. (D) Root-mean-square deviation (RMSD) values
were measured along molecular dynamics trajectories (300 ns) of the WT (blue) and Val87Ala (red)
protein monomer. (E) NAMD interaction energy between the opposing beta sheets (blue and ochre in
(B) and (C)). Left: continuous energy values corresponding to WT (blue) and Val87Ala (red). The
moving average (calculated every 0.5 ns) of the energy values is highlighted to facilitate visualization.
Right: mean +/— STD of the energy values shown in the left plot between nanoseconds 100 and 300.

Figure 3B shows the result of a simulation of the WT monomer after 300 ns of unre-
strained molecular dynamics. Val87 is part of a cluster of hydrophobic amino acids that
maintains the local structure of a domain formed by several beta sheets. Val87 interacts with
Val71 and Phel00, which are located in beta strands parallel to the one containing Val87,
and with Val190 and Leu201, which are located in the opposite beta sheet. In the mutant
protein (Figure 3C), the Ala87 amino acid also interacts with the same residues, although
the interaction appears to be slightly less compact due to the smaller size of the alanine com-
pared to valine. This difference does not translate into a change in the monomer’s overall
structure, as indicated by the nearly equivalent RMSD (root-mean-square deviation) values
of the WT and Val87Ala throughout the entire molecular dynamics trajectory (Figure 3D).



Genes 2025, 16, 1207

7 of 12

The nonbonding energy contributions of the interaction between the beta sheet con-
taining the variant residue (blue in Figure 3B,C) and the beta sheets containing Val190
and Leu201 on the opposite sheet (ochre in Figure 3B,C) were evaluated using the NAMD
Energy Plugin of VMD (NAMD v.2.14; Philips et al., 2005) [20]. Figure 3E shows the NAMD
interaction energy values between these structures throughout the entire trajectory, as well
as a calculation of the average values starting from nanosecond 100 of the simulation (to
allow for a prior equilibration time). With this simulation, a slight difference between the
energy values of WT and Val87Ala was detected.

Although these are not very significant differences, higher (i.e., less favorable) energy
values can be observed in the case of the Val87Ala variant. This difference does not seem to
be enough to cause structural changes in the mature protein, but an effect during protein
folding cannot be ruled out. This could perhaps result in a misfolded mature protein or a
smaller amount of correct protein in the cell. One of these molecular-level effects could be
responsible for the phenotypic effect observed in the patient.

4. Review of the Phenotype and Genotype of ROGDI-RD Patients
4.1. The Clinical Features

To date, 54 individuals with ROGDI variants have been reported [7,8,15,20-32]. The
clinical features of the published cases and the present case are listed in Table 1. The review
of the clinical characteristics revealed that all the patients had developmental pathologies
both in the brain and teeth. Developmental delay was present before the onset of epilepsy in
42% of the patients, while in 58% of the individuals the developmental delay was observed
following the start of the epileptic seizures. Speech delay was a prominent feature, with
67% being non-verbal, and most patients (76%) had profound/severe intellectual disability.
Epilepsy was reported in all the individuals, and median age at seizure onset was 9 months
(range: 1-48 months). Seizures were sensitive to fever in 20% of the individuals either at
onset or at follow-up. Epilepsy proved to be drug-resistant in 25% of cases. Dental abnor-
malities were also a consistent feature in 100% of the individuals, presenting with enamel
defects. The appearance of these defects was often reported as consistent with hypomature
amelogenesis imperfecta. See Box 1 for explanation of pathology in amelogenesis.

Table 1. Frequencies of the clinical features in previously reported ROGDI-RD patients and compari-
son with the present case. Denominators specify the number of individuals for whom that specific
information is available.

Published Cases (% of Clinical Features of
Category

the Symptom) the Present Case
General information
Male 30/54 (56%)
Female 24/54 (44%) +
Age at examination 1.5-18 years 28 years
Pregnancy and Delivery
Normal 23/33 (70%) +
Abnormal 10/33 (30%)
Development
Developmental delay 54/54 (100%) +
Delay from birth 14/33 (42%) +
Delay after seizure onset 19/33 (58%)
Mild /moderate intellectual disability 5/21 (24%) +
Profound/severe intellectual disability 16/21 (76%)
Speech delay 11/33 (33%)
Absent speech 22/33 (67%) +
Ability to walk unaided 22/29 (76%)
Epilepsy 51/51 (100%)
Median age of onset (range) 9 months (1-48 months) 11 months
Febrile seizures 10/51 (20%) +

Refractory to treatment 13/51 (25%) +
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Table 1. Cont.

Published Cases (% of Clinical Features of
Category

the Symptom) the Present Case

Dental features

Amelogenesis imperfecta/teeth discoloration 54/54 (100%) +
Additional features

Normal head circumference 11/18 (61%)

Microcephaly 7/18 (38%) +

Dysmorphic features 11/54 (20%) +
Neuroimaging

Cerebral atrophy 8/21 (38%)

Enlarged ventricles 7/21 (33%)

Cerebellar hypoplasia 3/21 (14%)

4.2. ROGDI Variants and the Phenotype

All the ROGDI variants identified to date are predicted to be protein-truncating
variants, possibly resulting in loss of protein function. In this study, we expand the
molecular spectrum by presenting a missense variant in trans with a frameshift variant.
The phenotype of the present case is fully compatible with ROGDI-RD, suggesting that the
missense variant is likely to have a loss-of-function effect.

This case exemplifies the importance of having both the detailed phenotype and the
genotype for the definitive diagnosis. Initially, only seizures and developmental delay were
reported as the symptoms of the patient. However, upon re-examining the patient’s medical
history after identification of the ROGDI variants, one of which was a VUS, it was found
that during childhood he had tooth discoloration and enamel defects, which were treated.
This study underlines the importance of detailed clinical information for the evaluation
of the sequence data. Given the limited number of reported patients and the genetic
homogeneity among them, meaningful statistical meta-analyses or genotype—phenotype
correlations are not yet feasible; however, future studies including more genetically diverse
cases may help to address this limitation.

4.3. Complex Interactive Neuro-Dental Developmental Networks and ROGDI-RD

While dentin and dental pulp originate from the neural crest, enamel is derived from
neuroectoderm-like structures in the brain [33,34]. Tooth development, which starts with
the formation of the dental lamina at 6 weeks in utero, is a continuous process, with critical
time windows. Mineralization of primary incisors commences at around 4 months in utero,
and the full primary dentition erupts by 3 years of age. Permanent second molars develop
from 3 years to 14-16 years, while the development of permanent third molars is completed
by the age of 18-25 years [33,35].

The human brain’s development is also profound from the second trimester of the
fetal period starting with the growth of initial axons, until young adulthood. Develop-
mental changes in neuronal connectivity reflect the social, cognitive, and motor skills
of the individual during this period. Interruption of development increases the risk for
neurodevelopmental disorders such as autism spectrum disorder, attention-deficit hyperac-
tivity disorder, and schizophrenia. Sensitive periods for brain and tooth development are
suggested to coincide [33,36].

While the question is still open about the extent of interplay between these two
dynamic developmental systems of dentition and brain, the observation that enamel
defects are quite common among patients with congenital CNS disorders supports the
interaction between these two networks.

Many key neuropeptides involved in brain development and function, along with
their receptors—including serotonin, melatonin, and circadian rhythm genes—are ex-
pressed by ameloblasts. Additionally, some markers specific to glial cells are expressed
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in the dental pulp, confirming the connection. All these factors are shown to have the
ability to modulate enamel formation, and knockout animal models have exhibited teeth
malformations [33,34,37,38].

In a review of enamel-related phenotypes, Wright [6] listed 18 syndromes—including
ROGDI-RD and other forms of Kohlschiitter—Tonz syndrome—that are characterized by
enamel and CNS abnormalities. Among these, two syndromes—intellectual developmen-
tal disorder with speech delay, dysmorphic facies, and T-cell abnormalities (associated
with BCL11B variants) and oculoskeletodental syndrome (due to PIK3C2A variants)—also
present with tooth agenesis for the patient presented in this study.

Given that different mechanisms regulating tooth number and enamel formation
function at different stages of odontogenesis, it remains an open question whether this
is a pleitropic effect of a single gene variant or whether the tooth agenesis is an inde-
pendent event since it has a high prevalence and multifactorial etiology in the general
population [39,40]. Nevertheless, we propose that tooth agenesis should be systemati-
cally evaluated in future patients, as this may help determine whether it could serve as a
supportive diagnostic criterion for ROGDI-RD.

The ROGDI-RD case illustrated in Wright [6] exhibited hypomineralized enamel
defects affecting the primary dentition. Since primary incisors typically erupt between 6
and 15 months of age, the late onset of epilepsy and regressive CNS symptoms during
this period may reflect a critical window of interaction between the complex neuronal
and dental developmental pathways. Therefore, simultaneous early screening for dental
and neurological symptoms could facilitate earlier diagnosis of ROGDI-RD, enabling
timely intervention and potentially mitigating disease progression. A full preventive
dental care program should be established for the patients where mineralization of the
hypomineralized enamel could be undertaken with fluoride and/or casein phosphopeptide
amorphous calcium phosphate agents from a very young age and a restorative treatment
can be provided, when necessary.

Box 1. Tooth development and terms used for enamel pathology

Tooth development follows the sequence of initiation, morphogenesis, differentiation, and mineral-
ization [35,40]. The formation of enamel, amelogenesis, is controlled by differentiated and highly
specialized ameloblasts which deposit a matrix that becomes progressively mineralized [6]. Disrup-
tion of matrix deposition by genetic or environmental factors leads to reduced enamel thickness
termed enamel hypoplasia. When mineralization is affected, the enamel is formed in full thickness
but is hypomineralized in severe cases while in milder cases characterized as hypomature [6].

5. Conclusions

The present study is the first report of a novel missense variant in trans to a frameshift
variant in ROGDI and underlines the importance of a thorough clinical investigation in early
diagnosis. Since amelogenesis imperfecta is a very broad enamel phenotype [22], extensive
sequencing approaches and multidisciplinary efforts could enable a thorough stratification
of the patient groups and ensure that the oral symptoms of patients with brain-related
conditions, such as epilepsy or cognitive delay, are appropriately recognized and addressed.
The interaction between the nervous and stomatognathic systems is a complex, bidirectional
process mediated by different signaling molecules and cellular interactions. Although the
precise function of ROGDI remains incompletely understood, its role in V-ATPase assembly
and lysosomal acidification suggests that modulating organelle pH or enhancing V-ATPase
activity could be explored as potential therapeutic strategies. Preclinical models, such as
the Rogdi~/~ mouse, may provide platforms to test such interventions. Further research
and a multidisciplinary approach are needed to fully elucidate the underlying mechanisms,
particularly at the molecular level, to develop effective prevention and treatment strategies.
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