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The Role of Gln61 in HRas GTP Hydrolysis: A Quantum
Mechanics/Molecular Mechanics Study
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ABSTRACT Activation of the water molecule involved in GTP hydrolysis within the HRas,RasGAP system is analyzed using
a tailored approach based on hybrid quantum mechanics/molecular mechanics (QM/MM) simulation. A new path emerges:
transfer of a proton from the attacking water molecule to a second water molecule, then a different proton is transferred from
this second water molecule to the GTP. Gln61 will stabilize the transient OH� and H3O

þ molecules thus generated. This newly
proposed mechanism was generated by using, for the first time to our knowledge, the entire HRas-RasGAP protein complex in
a QM/MM simulation context. It also offers a rational explanation for previous experimental results regarding the decrease of
GTPase rate found in the HRas Q61A mutant and the increase exhibited by the HRas Q61E mutant.
INTRODUCTION
HRas protein is the most representative member of the Ras
subfamily of small GTPases, a form of soluble G-proteins
involved in signal transduction (1). G-proteins usually
behave as molecular switches; they shift between an active
conformation, bound to GTP, and an inactive GDP-bound
conformation. In keeping with their function, these proteins
present very low intrinsic GTPase activity and low catalytic
efficiency (Kcat/Km ratio); these characteristics lengthen the
lifetime of the active state (2). In the case of HRas, GTP
hydrolysis is modulated by the presence of a second protein,
the GTPase activating protein RasGAP. RasGAP stabilizes
the HRas conformation and supplies an additional arginine
residue that helps to place a water molecule in a position
that facilitates catalysis (3), thus leading to GTP hydrolysis
and subsequent HRas inactivation.

Despite all the existing data on the structure and
functionality of the HRas,RasGAP complex, the catalytic
mechanism of GTP activation and hydrolysis is still contro-
versial (4). Different mechanisms have been proposed.

One based on the initial crystal structure (5) suggested that
thewater moleculewas activated by the Gln61 residue, which
acts as the general base proton acceptor. The position of
Gln61 is conserved in the family of guanine nucleotide
binding proteins (6) and it is known that mutation of Gln61

by Ala reduces the rate of GTP hydrolysis (7), whereas
substitution of Gln61 by Glu, which is considered a better
proton acceptor, increases the rate of GTP hydrolysis (8).

Some computational studies have simulated GTP hydro-
lysis on this basis (9). The conclusions, obtained using an
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ab initio 6-31 basis set but including only 28 residues in
the MM region of the simulation instead of the whole
protein, involved an interaction between the amide group
of Gln61 and the carboxylate group of Glu63, which
increases the proton withdrawal potential of Gln61. This
was supported by experiments using an E63K mutant
protein (10). The role of Gln61 as a proton acceptor has,
however, been questioned by other studies (11) that suggest
that the GTP molecule acts as the general base for its own
hydrolysis (12,13). In such a substrate-assisted catalysis
mechanism, Gln61 would play a role in the stabilization of
the transition state (14).

Finally, more recent reports of the prehydrolysis state of
the protein obtained using a cryo-technique suggested that
a second water molecule is involved in the catalytic mecha-
nism (15), adding an element to the process that, in addition
to the introduction of the whole protein structure in the
simulations, can be now used to explore alternative ways.

Using a newly developed approach based on the quantum
mechanics/molecular mechanics (QM/MM) method, and
applying it to the whole HRas-RasGAP protein complex
(Fig. 1), we have modeled the activation of the attacking
water molecule—a process leading to GTP protonation
and subsequent GTP hydrolysis.
MATERIALS AND METHODS

Molecular dynamics simulations

The system used in our simulations was based on the x-ray structure of the

HRas,RasGAP complex (Protein DataBank code 1WQ1 (16)). It includes

the whole HRas protein and residues 714–1047 of the catalytic domain of

the GTPase activating protein RasGAP. Aluminum fluoride and GDP mole-

cules contained in the crystal structure to mimic the geometry of the tran-

sition state of the active center were replaced by a GTP molecule,

maintaining all common atoms in the same position as in the crystal struc-

ture. The distance between the oxygen of the catalytic water molecule
doi: 10.1016/j.bpj.2011.11.4005
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FIGURE 1 Atoms in the QM/MM system. Atoms in the QM region are

represented as thick sticks surrounded by the rest of the molecules in the

active center included in the MM region (thin sticks) and part of the protein

system also in the MM region (ribbons).
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(HOH numbered as ‘‘230’’ in PDB structure 1WQ1) and Pg of GTP was

kept at 2–3 Å by an imposed restraint. A second water molecule was placed

in the active site according to the crystal structure of the prehydrolysis state

obtained by Scheidig et al. (15). Kþ ions were added as counterions to

neutralize the negative charge of the system and placed in a shell around

the system using a Coulombic potential in a grid. The neutralized

complexes were then immersed in a rectangular parallelepiped solvent

box and a distance of 12 Å was maintained between the wall of the box

and the closest atom of the solute.

The counterions and the solvent molecules were added using the LEaP

module of AMBER (17,18). Before the QM/MM simulation itself, 10 ns

of unrestricted molecular dynamics (MD) were applied to the system to

obtain an equilibrated initial structure, using the PMEMD algorithm of

AMBER10 (17,18) and the parm99 parameter set (17). Initial relaxation

of the system was achieved by performing 10,000 steps of energy minimi-

zation using a cutoff of 10.0 Å. Subsequently, and to start the MD simula-

tions, the temperature was raised from 0 to 298 K in a 500-ps heating phase,

and velocities were reassigned at each new temperature according to

a Maxwell-Boltzmann distribution. During this period, the dihedral of the

Ca trace were restrained with a force constant of 500 kcal mol�1 rad�2.

During the last 200 ps of the equilibration phase of the MD, the force

constant was reduced stepwise to 0. The SHAKE algorithm was used

throughout to constrain all the hydrogen bonds to their equilibrium values

so that an integration time step of 2 fs could be employed. The list of

nonbonded pairs was updated every 25 steps, and coordinates were saved

every 2 ps. Periodic boundary conditions were applied and electrostatic

interactions were represented using the smooth particle mesh Ewald

method with a grid spacing of ~1 Å.
Quantum mechanics/molecular mechanics
simulations

After initial relaxation using MD procedures, as described above, quantum

mechanics/molecular mechanics simulations (QM/MM) simulations were

performed using the Sander module of AMBER10 (17,18). The hybrid

QM/MM approach is a suitable method for simulating processes, such as

enzymatic reactions, in which chemical bonds are formed and broken.

The method requires the partitioning of the system in two regions: quantum

mechanics (QM) and molecular mechanics (MM). Calculations involving

the atoms belonging to the QM region were performed using the PM3 semi-

empirical Hamiltonian. The atoms in the system that were not part of the

QM region (the MM region) were treated in a classical MM way. In our

system, the QM region included the two water molecules involved in catal-

ysis and the GTP atoms from the g-phosphate group up to the C50-C40 bond.
It also included the Mg2þ ion and all the oxygen atoms involved in its coor-

dination sphere, including the hydroxyl groups of the Ser17 and Thr35 resi-

dues and two coordinating water molecules. Side chains of the Lys16 and

Gln61 residues of HRas and the chain of Arg789 belonging to the RasGAP

protein were also included (atoms in the QM region are represented in

Fig. 1).

The QM region contained 75 atoms including six link H-atoms used to

maintain the integrity of the covalent bonds sectioned by the QM/MM

boundary (17). In the case of the experiment illustrated in Fig. 2, carbox-

ylate atoms of Glu63 were also included in QM region. The conformation

obtained after MD procedures (see above) was equilibrated again for

200 ps using this QM/MM approach. During this equilibration, constraints

corresponding to all the covalent bonds between the atoms of the QM

region were maintained. All the constraints, except those corresponding

to the parameters of the reaction and to the maximum allowable distance

position of the catalytic water, were removed progressively over the next

100 ps. In all cases, position of the catalytic water molecule was stable

under QM/MM simulation without position restrains. The average values

of significant geometrical parameters of the QM/MM system are summa-

rized in Table 1. SHAKE was not used for either the MM region or the

QM region. Due to the presence of a peptide bond in the side chain of

the Gln61 residue, an MM correction to the peptide linkages was used. A

cutoff of 8 Å was used to calculate the QM/MM electrostatic interactions.

The extra Gaussian terms that were used in the PM3 Hamiltonian to

improve the core-core repulsion term in QM-QM interactions were also

included for the QM-MM interactions.
Energy surface calculations

In the hybrid QM/MM potential, the effective energy of the system is

divided into three components, as

Eeff ¼ �
J

��HQM þHQM=MM

��J
�þ EMM;

where HQM is evaluated using the chosen QM method (in our case PM3

Hamiltonian); E is calculated classically from the MM atom positions
MM

using the AMBER force field equation and parameters; and HQM/MM is

the sum of an electrostatic term and a Lennard-Jones (van der Waals)

term, representing the interactions between the atoms of the QM and

MM regions. Throughout the trajectories, the EMM term of the effective

energy was not taken into account because we considered that the HQM

plus HQM/MM terms were sufficiently representative of the influence of

the protein moiety on the chemical reaction.

To explore the conformational space defined by the reaction coordinates,

a new approach, to our knowledge, was developed. In this approach, based

on adaptively biased MD (19) and presenting some characteristics of

steered MD (20) as well as umbrella sampling (21) procedures, QM/MM

trajectories were simulated by restraining both reaction coordinates using

harmonic potentials with a flat bottom and parabolic sides. The reaction

coordinates used in the calculations were the bond-breaking distance
Biophysical Journal 102(1) 152–157



FIGURE 2 Free energy landscape for the activation of the catalytic water molecule supposing Gln61 as proton acceptor assisted by Glu63. DG� values

obtained for the whole system are shown for the different states corresponding to the distances: x axis, from proton to oxygen atom in the attacking

water molecule (wat A); y axis, from the same proton to the oxygen in 31 position of Gln61. The structure of the active center in the initial state (minimum

DG�
GTP

4� value adjusted to 0), transition state (DG�
GTP

4- z 35 kcal$mol�1), and final state (DG�
GTP

4- z 25 kcal$mol�1) is depicted, indicating the relative

positions of Ser17, Thr53, Gln61, Glu63, GTP, and the two water molecules (wat A and wat B).
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from the proton to the oxygen atom in the attacking water molecule and the

bond-forming distance from this same proton to the oxygen in the 31 posi-

tion of Gln61 (Fig. 2) or to the oxygen of the second water molecule (Figs. 3

and 4 and see Fig. S1 in the Supporting Material). For each trajectory, the

value of one coordinate (x axis) was increased throughout the simulation

time, as in steered MD (20), from 0.95 to 1.8 Å in steps of 0.025 Å, whereas

the size of the flat-bottomed part of the harmonic potential of the other coor-

dinate (y axis) was kept constant within a narrow range. The next trajectory

was generated by adding an increment of 0.025 Å to the constant value of

the y axis.

A certain degree of overlapping of points was observed from one trajec-

tory to the next, as occurs in umbrella sampling procedures (21), ensuring

a better coverage of the whole surface. The generation of a large number of

trajectories made it possible to explore in detail the conformational space

defined by the reaction coordinates. We sampled the conformational space
TABLE 1 Main geometrical parameters of the QM/MM system

Distance Average value mean 5 SE

Pg - Ocat 3.01 5 0.02

Pg - O3b 1.63 5 0.02

O3b- Pb 3.01 5 0.02

Mg - O1g 1.91 5 0.04

Mg - O2b 1.90 5 0.04

Average values are mean 5 SE of the dynamical fluctuation during the

300-ps stabilization of the QM region.
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of the reaction with ~12,000 homogeneously distributed points on a surface

of 0.85 � 0.85 Å. Three-dimensional smoothing of the data was applied

using the local smoothing technique with tricube weighting and polynomial

regression. Final DG� values in the energy maps were normalized by sub-

tracting from all of them the lowest value obtained in each experiment.

Minimum values that were adjusted to 0 in each map were those corre-

sponding to the initial state (Fig. 2 and see Fig. S1) or to the final state

(Figs. 3 and 4).
RESULTS AND DISCUSSION

To evaluate the different mechanisms proposed for the acti-
vation of the water molecule involved in catalysis, as well as
to identify the proton acceptor and the role of Gln61 in each
pathway, a specific simulation method was devised based on
the hybrid QM/MM potential (22) implemented in the
AMBER10 package (17,18,23). The approach, which shares
some characteristics with steered MD and also with
umbrella sampling procedures, uses the adaptively biased
MD (19) method to obtain a free energy surface in the
conformational space defined by the reaction coordinates
(see Materials andMethods). Analysis of the surface charac-
teristics provided us with variations in the free energy that
helped to describe suitable reaction mechanisms.



FIGURE 3 Free energy landscape for the proton transfer between the attacking water molecule (wat A) and the second water molecule (wat B). The axes

represent the following distances: x axis, from proton to oxygen atom in the attacking water molecule (wat A); y axis, from the same proton to the oxygen

atom in the second water molecule (wat B). The structure of the active center in the initial state (DG�
GTP

4� z 3 kcal$mol�1), transition state (DG�
GTP

4- z
22 kcal$mol�1), and final state (DG�

GTP* value adjusted to 0) is depicted, including the same residues as in Fig. 1. GTPmolecule with pentacovalent Pg in the

final state is shown by GTP*. Note the position of Gln61 in the transition state, where it stabilizes the position of the water molecules during proton transfer.

QM/MM Simulation of HRas GTP Hydrolysis 155
To begin, and as a previous validation test, the approach
was used to study a well-known mechanism: the ionization
of two water molecules resulting in a molecule of OH� plus
a molecule of H3O

þ. The free energy landscape obtained
(see Fig. S1) gave a DG� of ~19 kcal,mol�1 between the
initial and the final states, in complete agreement with the
bulk water value (DG ¼ �RT ln K ¼ �19.1 kcal,mol�1

at 298.15�K and pH ¼ 7), and thus supporting the accuracy
of the method.

Using the same approach, and including in the QM/MM
system the whole crystallized structure of the
HRas,RasGAP complex (16), two alternative hypotheses
for the activation of the attacking water molecule were
tested. As indicated under Materials and Methods, the
complete simulation system comprises not only the atoms
in the active center but, for the first time to our knowledge,
the whole protein complex, all included in a solvent box
(total number of atoms >53,000). The first mechanism
analyzed included the assumption that Gln61 acts as a proton
acceptor assisted by Glu63. The free energy landscape ob-
tained for the activation of the catalytic water molecule
(Fig. 2) gave a DG� of ~25 kcal,mol�1 between the initial
and the final states; even higher than for the ion product
of water in a polar environment (see above). This result
ruled out the possibility of Gln61 acting as a general base,
in agreement with previous equilibrium studies of proton
transfer from the catalytic water molecule to this residue
(11). To provide further support to this statement, an uncon-
strained simulation of the reaction once the final state was
reached, was performed (see Fig. S2). As expected, in
absence of restrictions, the system reverted spontaneously
from these situation to the initial reaction substrates (unpro-
tonated Gln61 plus two water molecules), indicating that the
products were not stable in the simulated conditions.

Once Gln61 was ruled out as the proton acceptor, an alter-
native mechanism was tested. According to the arrangement
of the side chain of residues and water molecules at the cata-
lytic site of the prehydrolysis state of HRas (15), the proton
transfer may occur between an attacking water molecule
(wat A) and a second water molecule (wat B) acting as
the proton acceptor. The free energy landscape obtained in
these conditions (Fig. 3) indicated that DG� between the
initial and the final states is ~�3 kcal,mol�1. Detailed anal-
ysis of the structure that corresponds to the final state
Biophysical Journal 102(1) 152–157



FIGURE 4 Free energy landscape for the Q61A mutant. Axes are defined as in Fig. 3. The structure of the active center in the initial state (DG�
GTP

4- z
11 kcal$mol�1), transition state (DG�

GTP
4- z 38 kcal$mol�1), and final state (DG�

GTPH
3� value adjusted to 0) is depicted, including the side chain of Ala61

residue instead of Gln61.
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(Fig. 3, bottom right) showed that the GTP molecule is
protonated, suggesting that GTPH3� is more stable than
GTP4� in the environment of the catalytic site. In addition,
and unexpectedly, the results indicated that the proton
bound to the GTP molecule is initially not part of wat A
but of wat B, which acted as the initial proton acceptor.

To analyze the behavior of the protons in detail
throughout the process, the reaction along the minimum
energy path between the initial and the final states was simu-
lated (dashed line in Fig. 3). Tracing the proton movements
(a video of the entire process is provided as Movie S1 in the
Supporting Material) revealed that a proton from wat A is
initially transferred to wat B, thus forming a hydronium
ion. Then, toward the end of the trajectory, a different proton
from wat B is transferred to GTP. In addition, at this precise
moment, the free OH� molecule approaches the GTP
g-phosphate forcing it to adopt the trigonal bipyramidal
geometry characteristic of the pentacovalent state, suggest-
ing a SN2 reaction mechanism (24). Although, in our condi-
tions, a SN2 mechanism appeared as favorable, further
studies are still needed to fully unravel the complete mech-
anism of the GTP hydrolysis as we cannot completely rule
out alternative mechanisms, i.e., SN1 as it has been proposed
for Hsc70 ATPase (25).
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In our model, the atomic rearrangement at the end of the
trajectory suggests that, in the absence of the simulation
restraints used to obtain the energy surface, the hydrolysis
of GTP can eventually occur spontaneously from the penta-
covalent structural state. Additionally, it suggests that
the rate-limiting step of the reaction catalyzed by HRas in
the presence of RasGAP would be the initial activation of
wat A.

Under this hypothesis, the value of the energy barrier
located between the initial and final states and correspond-
ing to the transition state, is ~22 kcal,mol�1, lower than
the 28 kcal,mol�1 of the barrier for the ionization of water
in a polar environment (see Fig. S1). Analysis of the struc-
ture of the transition state at the saddle point (Fig. 3, bottom
left) showed a strong interaction between the amide group of
Gln61 and the OH� formed from wat A. An interaction
between a carbonyl atom in the side chain of Gln61 and
the hydronium ion formed by wat B also contributes to
the stabilization of the transition state. These results agree
with the previously proposed mechanism of substrate-assis-
ted catalysis (12,13), although, for the first time to our
knowledge, they indicate the essential role of wat B in the
process: to mediate the transfer of the proton from wat A
to GTP. The role of Gln61 in this new scenario consists of
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stabilizing the OH� and H3O
þmolecules that are transiently

generated during proton transfer.
In the same free energy landscape, a second local

minimum can be observed (Fig. 3, top right-hand corner).
The structure of the active center in this region corresponds
to protonated GTP. Nevertheless, the origin of the proton
bound to GTP in this case is not wat B but wat A, without
the mediation of wat B. Although this alternative pathway
cannot be completely ruled out, its higher energy barrier
(28 kcal,mol�1 vs. 22 kcal,mol�1) make it less favorable.

To obtain additional results to support the proposed role of
Gln61, a second simulation using the same QM/MM
approach was performed. In this case, the Gln61 residue
was replaced by Ala to mimic experimental conditions in
which reduced GTPase activity of HRas was previously
measured in vitro (7). The free energy landscape obtained
for the same proton transfer path is shown in Fig. 4. The value
of the new energy barrier is clearly higher (~38 kcal,mol�1).
In fact, in the absence of the Gln61 side chain that stabilizes
the transient OH� and H3O

þ molecules, the alternative path
for direct protonation of GTP appeared to be more favorable,
in direct opposition to the situation observed for the wild-
type protein. These results support the role of Gln61 in the
stabilization of the proton transfer path from wat A to wat
B and then to GTP. In addition, they also explain the decrease
of the GTPase rate found in vitro for the Q61A mutant (7).
Moreover, the proposed mechanism could also offer
a rational explanation for the increased rate of GTP hydro-
lysis found in the Q61E mutant (8), as it is conceivable that
a negatively charged glutamic residue would stabilize the
transient hydronium ion better than glutamine.
SUPPORTING MATERIAL

Two figures and one movie are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(11)05356-2.
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tion: implications for the mechanism of GTP hydrolysis. EMBO J.
9:2351–2359.

6. Kitayama, H., Y. Sugimoto, ., M. Noda. 1989. A Ras-related gene
with transformation suppressor activity. Cell. 56:77–84.

7. Der, C. J., T. Finkel, and G. M. Cooper. 1986. Biological and biochem-
ical properties of human rasH genes mutated at codon 61. Cell. 44:
167–176.

8. Frech, M., T. A. Darden,., A. Wittinghofer. 1994. Role of glutamine-
61 in the hydrolysis of GTP by p21H-Ras: an experimental and theoret-
ical study. Biochemistry. 33:3237–3244.

9. Grigorenko, B. L., A. V. Nemukhin, ., S. K. Burt. 2005. QM/MM
modeling the Ras-GAP catalyzed hydrolysis of guanosine triphosphate.
Proteins. 60:495–503.

10. Fasano, O., T. Aldrich,., M. Wigler. 1984. Analysis of the transform-
ing potential of the human H-Ras gene by random mutagenesis. Proc.
Natl. Acad. Sci. USA. 81:4008–4012.

11. Maegley, K. A., S. J. Admiraal, and D. Herschlag. 1996. Ras-catalyzed
hydrolysis of GTP: a new perspective from model studies. Proc. Natl.
Acad. Sci. USA. 93:8160–8166.

12. Schweins, T., M. Geyer, ., A. Wittinghofer. 1995. Substrate-assisted
catalysis as a mechanism for GTP hydrolysis of p21Ras and other
GTP-binding proteins. Nat. Struct. Biol. 2:36–44.

13. Schweins, T., R. Langen, and A. Warshel. 1994.Why have mutagenesis
studies not located the general base in Ras p21. Nat. Struct. Biol.
1:476–484.
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Figure S1. Free energy landscape for the ionization of water. Gº values of the 
system are shown for the different states corresponding to the following distances: x–
axis, from proton to oxygen atom in the attacking water molecule (wat A); y–axis, from 
the same proton to the oxygen atom in the second water molecule (wat B). The 
structures of the two water molecules in the initial state (Gº value adjusted to 0), the 

transition state (Gº  28 kcal·mol-1) and final state containing OH- plus H3O
+ 

molecules (Gº  19 kcal·mol-1) are represented. 
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Figure S2. Unconstrained simulation of protonated Gln61. Final state of the 
experiment shown in Figure 2 was subjected to 5.000 steps of unconstrained simulation 

and Gº variation (in kcal•mol-1) was continuously measured. The structure of the 
active center at the beginning (protonated Gln 61) and after the simulation process in 
absence of constrains (unprotonated Gln61 plus two water molecules, equivalent to the 
initial reaction substrates), are represented. 
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