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ABSTRACT We have developed methods for
the extraction of evolutionary information from
multiple sequence alignments for use in the study of
the evolution of protein interaction networks and in
the prediction of protein interaction. For Rounds 3,
4, and 5 of the CAPRI experiment, we used scores
derived from the analysis of multiple sequence align-
ments to submit predictions for 7 of the 12 targets.
Our docking models were generated with Hex and
GRAMM, but all our predictions were selected using
methods based on multiple sequence alignments
and on the available experimental evidence. With
this approach, we were able to predict acceptable
level models for 4 of the targets, and for a fifth
target, we located the residues involved in the bind-
ing surface. Here we detail our successes and high-
light several of the limitations and problems that we
faced while dealing with particular docking cases.
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INTRODUCTION

Protein interactions form the basis of all cellular pro-
cesses, and the study of protein interactions is fundamen-
tal to our understanding of cell systems. Experimental
approaches to protein–protein interaction prediction, such
as the large-scale application of proteomics methods, are
providing overviews of complete protein interaction net-
works.1 Obtaining detailed structural information about
these complexes is important for understanding the basic
biochemical processes, but unfortunately the number of
structurally characterized complexes that have been depos-
ited in Protein Data Bank2 (PDB) is still rather small,
something that makes obvious the need for docking algo-
rithms that can reproduce the physical interaction of
proteins in protein complexes.

The main interest of our group is the extraction of
evolutionary information from multiple sequence align-
ments and its use for predict interactions within protein
interaction networks (see review3). Our involvement in the
CAPRI experiment is a logical extension of this work.

Since we have been developing methods based on the
extraction of evolutionary information for the prediction of
protein interactions, we are interested in knowing how
these sequence-based methods will function as a means of
scoring of protein docking predictions. If evolutionary

information can be used to successfully predict interaction
partners, perhaps the same information can be employed
to help in the prediction of physical regions of interaction
between proteins known to interact.

One obvious possibility would be to include residues that
may be conserved from an evolutionary point of view.
Although it is generally accepted that functionally impor-
tant regions, such as interaction surfaces, tend to be
marked by conserved residues, these residues may only
form a small part of interaction surfaces for various
reasons.

In some cases, it is possible to observe positions in
multiple sequence alignments that are specifically con-
served in subfamilies, often called tree determinants.4

Given a protein family and its subfamilies, tree determi-
nants can point to sequence changes that occurred during
family divergence and imply functional changes that have
been maintained during evolution. Tree-determinant resi-
dues are indicative of the presence of sites of functional
specificity and can coincide with specific protein–protein
interaction sites that are of functional importance for
determining the specificity of interaction.5–8 In some
cases, it has even been possible to use the information
derived from these methods to change the binding specific-
ity between proteins by manipulating a few residues in the
corresponding interfaces (see review9).

Another computational approach that makes use of
evolutionary information is based on the concept of inter-
protein correlated mutations.10,11 In the interaction be-
tween orthologous pairs of proteins in several species, we
can expect to find differences in the way in which muta-
tions affecting the interaction surface in one of the part-
ners have been compensated by mutations in the interac-
tion surface of the other partner. It has been demonstrated
that identification of correlated mutations can be used to
predict the tendency of pairs of residues to be in physical
proximity,11 and in some cases to predict models of interac-
tion that have been confirmed by experiments.12
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The training of neural networks and other artificial
intelligence methods with examples of known complexes
and their corresponding alignments is a different avenue
for the extraction of information from multiple sequence
alignments. Two of the first methods13,14 trained neural
networks with sets of complexes deposited in the PDB and
information from the corresponding multiple sequence
alignments of the corresponding protein families (i.e.,
sequence profiles). They represented interaction surfaces
as surface patches of neighboring residues. A number of
improvements and variants of these methods have been
recently proposed.15,16

In common docking approaches, the final stage involves
the evaluation of the solutions by human experts. We
propose to use multiple sequence alignment–based ap-
proaches as filters of the docking models at this level, by
evaluating the overlap between the interaction surfaces as
defined by the docking model using the methods described
above—conserved and tree-determinant residues, corre-
lated mutations, and predicted interacting surface patches.

METHODS
General Procedure

The first step in the analysis was to study the literature
for a list of biologically relevant residues and docking sites.
These may be residues for which there is experimental
evidence that they are involved in the docking, or equally
important residues for which there is biological evidence
against their involvement in the docking surface.

Evolutionarily related sequences were collected for each
of the interacting chains with BLAST.17 CLUSTALW18

was used to construct multiple sequence alignments. In
some cases, the alignment required manual intervention
or the removal of some of the loosely related sequences,
followed by additional alignments with CLUSTALW or
T-COFFEE.19 Furthermore, where possible, we took care
to avoid including sequences that had not conserved the
particular interaction under study.

From the final multiple sequence alignments we calcu-
lated the evolutionary information following the methods
described below.

Conserved Regions

For CAPRI Rounds 4 and 5 we included a method that
calculates stable regions in multiple sequence align-
ments.20,21 The method uses PSI-BLAST profiles and a
smoothing function to evaluate residue positions in query-
profile alignments.

Tree Determinants

Tree-determinant residues were calculated using the
sequence space and mutational behavior procedures as
described in del Sol Mesa et al.4 These methods both
extract family specific residues but rely on different prin-
ciples. The mutational behavior method detects sequence
positions based on their parallel evolution with respect to
the whole sequence. This is calculated as a rank-order
correlation coefficient for the whole multiple sequence
alignment:
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where Ri and Si are the rank-order values of the matrix
elements belonging to the protein change matrix and
position change matrix, respectively. R� and S� are their
average values.

In the case of the sequence space method, residues are
detected by performing a principal component analysis of
the alignment. The points representing the protein se-
quences in this space are automatically clustered into
protein families, and the vectors describing these clusters
are used to assign residues to each of the clusters.

For the mutational behavior method, residues were
selected as tree-determinant if the scores were higher than
0.9, while for the sequence space method, residues were
selected if the residues were completely conserved at least
in the protein cluster containing the target sequence, if
and only if this position was not conserved among all the
protein clusters.

Correlated Mutations

The results were calculated as in Gobel et al.10 and
Pazos et al.11 using an alignment constructed by concat-
enating sequences from the same organism that are closely
homologous to the corresponding target interacting pro-
teins. For this method to work, at least 6 concatenated
sequences are required. The Spearman correlation coeffi-
cient was calculated as shown above for the mutational
behavior method but using actual values instead of ranks.
Pairs with correlation coefficients higher than 0.9 were
selected. The application of the correlated mutation method
is restricted to targets in which the 2 proteins have
coevolved in various species. For this reason, the docking
of antigen–antibody and many enzyme–inhibitor com-
plexes is beyond the scope of application of correlated
mutations.

For those cases without enough sequences from the
same organisms, intrasequence correlated mutations were
calculated separately for each of the interacting proteins,
and those corresponding to exposed residues were used as
low-quality indicators of potential interacting sites.

Prediction of Interaction Patches

The method described by Fariselli et al.14 was used to
predict surface interacting patches. This method is based
in the ability of a supervised neural network system to
capture those features of interaction patches after an
adequate training procedure. This training was performed
with multiple sequence alignment–derived information
for a set of nonredundant patches of surface residues. After
the training, the neural network is able to provide predic-
tions for individual residues with an estimated 73% accu-
racy. For this work, reliability scores � 0.5 were consid-
ered informative.
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Scoring Models

The various lists of interesting residues were filtered by
cross-checking with the experimental evidence and by
structural criteria (solvent accessibility).

For each case, a broad list of approximately 10,000
rough models were obtained by running GRAMM22 with
very permissive parameters. This set of decoys was sorted
by taking into account the list of interesting residues. At
this stage, docking models that did not fit to the experimen-
tal information were rejected. The best 10 GRAMM models
were additionally expanded using the program Hex23 in
order to improve “soft” GRAMM results. In most cases, we
submitted models from both GRAMM and Hex for compari-
son purposes. However, we found that there was a ten-
dency for the rough models produced by GRAMM to have
too many clashes for the experiment.

The combined set of GRAMM and Hex solutions was
ranked by the proximity of interesting residues in the
docking solutions. This evaluation is done using the Xd
formula, as described by Pazos et al.,11 which gives an
estimate of the global proximity of the predicted residues
to the interaction surface in the form of the weighted
harmonic distances.

Positive Xd indicates cases for which the population of
predicted residues is closer together relative to the entire
population of residues. The correct docking models should
have higher values of Xd than the incorrect decoys, since
we are expecting the predicted residues to be closer
together.

RESULTS
Target 9—LicT Homodimer

LicT is a transcriptional antiterminator protein that
regulates expression of Bacillus subtilis operons involved
in �-glucosides metabolism.

Each monomer in the homodimer contains an RNA-
binding domain (CAT) and 2 phosphoenolpyruvate:sugar
phosphotransferase system (PTS) regulation domains
(PRD). These are phosphorylated at conserved histidines
when the substrate is available. In the LicT activated
form, PRD1 H100 and H159 are dephosphorylated, while
in PRD2, H207 and H269 are phosphorylated.

In this case, the initial docking models were generated
with Hex. The exploration space was restricted to a
maximum rotation angle of 15° and 4 Å root-mean-square
deviation (RMSD) from the starting orientation. We de-
rived conserved positions and tree determinants from the
23 sequences in the corresponding family alignments, the
accessible residues from Dictionary of Protein Secondary
Structure (DSSP), and sites of potential protein–protein
interactions from the neural network. Selection of the final
models was done according to the Xd values of accessible,
conserved, and tree-determinant residues and the visual
inspection of the models (see Fig. 1).

The real structure reveals that only PRD1 domains
interact. The PRD2 domains are flipped, so the conserved
histidines are completely accessible to phosphorylating
enzymes. This intramonomer structural change between

phosphorylated and dephosphorylated states would be
difficult to predict even with flexible docking.

For the best model, about 35% of interface residues were
correctly predicted (55% if only PRD1 domains are taken
into account). The model with the lowest local RMSD had
the highest Xd, indicating that, in this case, the sequence
information was informative for the selection of the best
docking solution in our set of decoys. The native docking
solution had equally high Xd [see Fig. 1(C)], suggesting
that Xd would have been useful in selecting the native
confirmation if it had been present in our starting set.

Targets 11 and 12—Dockerin and Cohesin

Cohesin domains are part of the cellulolytic scaffoldin
complex in the bacterium Clostridium thermocellum. There
are 9 cohesin domains in each scaffoldin complex. The
cohesin is responsible for binding the dockerin domain.
The cohesin–dockerin binding is a crucial part of forma-
tion of the complex. The dockerin domain is part of the
cellulytic enzyme structure and is homologous to the
EF-hand calcium-binding loop.

For the docking of Target 11, the cohesin structure was
unbound and the dockerin had to be generated as a
homology model from a PDB structural template that had
50% sequence identity. However, for the small dockerin
chain, there was experimental evidence to suggest that the
interacting residues were to be found in both parallel
helices. We were not able to extract much sequence-based
information for this chain, because dockerin is essentially
2 short, 20-residue repeats where residue signals are
masked by the strong signals from the calcium-binding
residues and the structural residues integral to holding
the dockerin together.

Despite this, 8 of our predictions were acceptably close to the
correct orientation (see Fig. 2), with our fourth model having a
fnat (fraction of predicted contacts over native) of 0.26.

However, we were distracted by experimental informa-
tion that implicated residues 11, 12, 45, and 46 in the
binding. As a result, we chose models where all these
residues were close to the interacting surface and these
models limited the orientation of the bound dockerin. In
fact only 45 and 46 are in contact in the native structure,
though the internal symmetry of dockerin suggests that it
might conceivably bind in 2 orientations.

Our predictions did improve when the bound dockerin
was introduced in Target 12, although the model that we
submitted directly from GRAMM that had an 0.44 fnat
and 2.06 Å local RMSD had a few too many clashes.

Target 18—Xylanase and Inhibitor

Target 18 was a complex between xylanase from Aspergil-
lus niger and an inhibitor, Triticum aestivum xylanase
inhibitor-I (TAXI). While the binding of the inhibitor
might have come about from evolutionary pressures, it
was not be possible to say the same for the xylanase.
Fortunately the experimental evidence suggested that the
binding was competitive, so we knew that TAXI must
somehow block the binding site.

One further problem that came up was that while there
were enough sequences to make calculations for sequence-
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based residues for TAXI, the sequences we found were
heavily biased toward the evolutionarily related aspartic
proteases: There were only 4 sequences that probably
functioned as inhibitors. Nevertheless, we were able to
predict correctly that 3 loops on the surface of TAXI were
the most likely to be involved in the binding of the
xylanase (see Fig. 3).

While we correctly predicted the binding surface of
TAXI, however, we were not able to orientate the enzyme
correctly in the 3 predictions submitted, although one of
the models did have the best overall RMSD.

CONCLUSIONS

Our methods, while limited by the requirement of a
common evolutionary history to a subset of targets, are
able to predict interacting regions in docking targets some
of the time. However, although we have used multiple
sequence alignment–based evaluation schemes to predict
a high proportion of “acceptable” docking models, we were

not able to use exclusively sequence-based methods to
predict models classed as “good” and higher. In part this
was due to factors beyond our control. For example, for the
targets in CAPRI Round 3, we did not have a sufficiently
high model sample space, and for Targets 10 and 14, our
rough docking strategy was not able to provide docking
solutions that fit the necessary experimental criteria.

There were substantial conformational changes associ-
ated with complex formation for several targets, while
with Targets 11 and 12, we were deceived by experimental
evidence that in the end did not fit with the orientation of
the native complex. The solutions for these complexes
emphasized the variability and complexity of the biology
associated with the CAPRI docking targets and showed
that care must be taken even when interpreting experimen-
tally derived information.

For the remaining target (Target 18), we were able to
correctly predict the binding surface of the inhibitor, but
without experimental evidence, we were forced to make

Fig. 1. Model 2 for Target 9. (A) Our best-ranked model showing conserved histidines in spacefill. (B) The
native LicT homodimer structure showing the position of the conserved histidines. (C) A graph showing Xd
values for the 10 models that we sent compared to the Xd for the real interaction (in green). The red bar
corresponds to the model with the best fnat.
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guesses as to which part of the enzyme active site the
inhibitor would block.

Despite the difficulties we encountered, the results
obtained were in agreement with the scope of our ap-
proach, which was focused on extracting valuable docking
models from a set of low-quality decoys.

It is clear that our overall approach can be improved.
One of the more obvious drawbacks of our approaches is
the limited size of the sample space we are working with.
As docking methodologies become more widely available,
it will become possible to employ a range of docking
methods in order to broaden the sample space available to
us. In addition, the continued growth of the sequence
databases ought to improve the number and distribution of
sequences available for each target, something that can
only increase the capacity of our sequence-based ap-
proaches.
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